Quantum-inspired event reconstruction with Tensor Networks

Based on JHEP 08 (2021) 112; arXiv: 2106.08334 [hep-ph] with Michael Spannowsky

2nd symposium on Artificial Intelligence for Science, Industry, and Society

October 11th - 15th, 2021

Sales pitch of the talk!

- We more or less know how to get well performing Neural Network to classify jets, LHC events, even cats and dogs...
- What we don't know is what this network learns.
- Can we use Quantum Mechanics to have more insight about the learning process?

What has a model learned?

What is learning?

How to develop "insightful" algorithms?

Jack Y. Araz - Tensor Networks

~(Ip

Introduction

What are Tensor Networks and how to play with them?

Tensor Networks for Machine Learning

 Top tagging through Tensor Networks Conclusion

Evenbly, Vidal; J Stat Phys 2011

Introduction

Tensor Networks: Origins

Singular Value Decomposition

Singular Value Decomposition

Computational cost is $\mathcal{O}(d^{N-1}\chi^2)$!!!

Types of Tensor Networks (some of them)

Types of Tensor Networks (some of them)

Projected Entangled Pair States

 $\mathcal{I}P^{3}$ Jack Y. Araz - Tensor Networks

Why TNs "might" perform well in classification tasks?

Not in this talk

Garipov, Podoprikhin, Novikov, Vetrov arXiv:1611.03214

- The range of a node in a Tensor Network bounded by its bond dimension.
- Tensor Networks can capture local "anomalies".
- Jets can produce localized clusters!!

Tensor Networks for Machine Learning

Matrix Product States for Classification

Sub-Outline

- How to embed the data?
- How to form a network?
- How to train the network?

 $|\Psi\rangle = \sum \mathscr{W}_{p_1...p_n} |p_1\rangle \otimes |p_2\rangle \otimes ... \otimes |p_n\rangle$ $p_1, ..., p_n = 0$ Little odification

Data Embedding

$$\left\{\begin{array}{c} \mathbf{O} \ \mathbf{O} \$$

Matrix Product States for Classification

Data Embedding

$$\Phi^{p_1 \cdots p_n}(\mathbf{x}) = \phi^{p_1}(x_1) \otimes \phi^{p_2}(x_2) \otimes \cdots \otimes \phi^{p_n}(x_n)$$
$$\phi^{p_i}(x_i) = \begin{bmatrix} \cos(x_i \ \pi/2) \\ \sin(x_i \ \pi/2) \end{bmatrix} \text{ or } \phi^{p_i}(x_i) = \begin{bmatrix} 1 \\ x_i \\ x_i^2 \end{bmatrix} \text{ or } \cdots$$

~(Ip

Density Matrix Renormalization Group Algorithm

Initially proposed in: Stoudenmire, Schwab; arXiv:1605.05775

Density Matrix Renormalization Group Algorithm

Initially proposed in: Stoudenmire, Schwab; arXiv:1605.05775

Top Tagging through Matrix Product States

University

Data from:

Similar preprocess, based on CNN:

η - based orderi	η -	based	ord	leri
-----------------------	----------	-------	-----	------

	I					
		\tilde{p}_T^1	\tilde{p}_T^2	\tilde{p}_T^3	\tilde{p}_T^4	-
ixels		\tilde{p}_T^{10}	\tilde{p}_T^9	${\tilde{p}}_T^8$	\tilde{p}_T^7	-
		\tilde{p}_T^{11}	\tilde{p}_T^{12}	\tilde{p}_T^{13}	\tilde{p}_T^{14}	ĺ
$\dot{\phi}$		\tilde{p}_T^{20}	\tilde{p}_T^{19}	\tilde{p}_T^{18}	$ ilde{p}_{T}^{17}$	ĺ
		\tilde{p}_T^{21}	\tilde{p}_T^{22}	\tilde{p}_T^{23}	\tilde{p}_T^{24}	ĺ
			η' -	– pi	\mathbf{xels}	

University

How about good old SGD?

SGD: As in usual NN back-propagation all tensors are updated simultaneously. All gradient tensors are normalized before the update!

DMRG+SGD: Each epoch started with 3 DMRG sweeps on first batch and the rest of the epoch trained by standard SGD.

How about good old SGD?

Conclusion

Conclusion

- Tensor Networks opens up the entire world of techniques developed for Quantum Mechanics to the Machine Learning applications.
- A linear network allows easier interpretation.
- Perfect tool to do linear algebra in higher-dimensional spaces.

Main Drawbacks

- Cost to train can be high
- Choice of architecture is still a research area.

Conclusion

- Tensor Networks opens up the entire world of techniques developed for Quantum Mechanics to the Machine Learning applications.
- A linear network allows easier interpretation.
- Perfect tool to do linear algebra in higher-dimensional spaces.

Next Steps

 PEPS: Classification with 2D systems. Some major progress only recently released!

Rakhshan, Rabusseau arXiv: 2003.05101

Zaletel, Pollmann PRL '20

- Many different MPS-based architecture can be explored.
- Specialized algorithm for understanding data better!

University

Model	Number of trainable parameters
Original MPS	390500
$\lambda \ge 10^{-3}$	204310
$\lambda \ge 3 \times 10^{-3}$	91690
$\lambda \ge 5 \times 10^{-3}$	32990
$\lambda \ge 10^{-2}$	18020

University

Test with cluster history sequence

Results for ϕ -based ordering

Results for ϕ -based ordering

