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A VISION OF NUMERICAL  
WEATHER PREDICTION (NWP)
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“Imagine a large hall like a theatre… the 
walls of this chamber are painted to form a 
map of the globe…. A myriad computers 
are at work upon the weather of the part 
of the map where each sits, but each 
computer attends only to one equation or 
part of an equation.”

–Lewis Fry Richardson, Weather Prediction by 
Numerical Process,1922

“Weather Forecasting Factory” by Stephen Conlin, 1986



MADE PRACTICAL BY ADVANCEMENTS IN COMPUTING AND 
NUMERICS

• Jule Charney and John Von Neumann led the 
first numerical weather prediction experiment in 
1950 

• They integrated the barotropic vorticity equation 
on 500-hPa surface 

• 24-hour forecast took about 24 hours to 
compute on ENIAC computer
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at the pole and equator, but in the longitudinal direction, we pad with periodic bound-531

ary conditions.532

Hyper-parameters which can be tuned to optimize a convolutional layer include the533

number of filters, the filter size, and the dilation of the filters. We only briefly experi-534

mented with adding more filters (with no significant e↵ect) but did try a number of com-535

binations of filter size and dilation. The latter in particular made important performance536

improvements in DLWP. In a dilated filter, as shown in Fig. A.1, the e↵ective size of the537

filter is increased without increasing the number of trainable parameters by skipping neigh-538

boring points and only using further points. For example, a 3⇥3 filter dilated by a fac-539

tor of 2 becomes a 5⇥5 filter with zeros everywhere except at the center, corners, and540

edges (Fig. A.1). In DLWP, 3⇥ 3 dilated filters applied over the whole globe resulted541

in better performance than the full 5⇥5 filters. This suggests that the CNNs learned542

more e↵ectively when not tasked with learning weights for extra highly-correlated neigh-543

boring points.544

Lastly, convolutional layers in image recognition often also use a technique called545

maximum pooling to further reduce the dimensionality of the images. This operation pools546

together 2⇥2 grids of the image into a single maximum value, thus reducing the dimen-547

sions of the image by a factor of 2 in both the height and width. The ‘decoder’ part of548

the auto-encoder CNN of Baldi (2012) applies this technique. To return to a fully-global549

grid for our weather forecasting task, we apply the inverse operation: up-sampling, which550

duplicates each value in a grid into a 2⇥ 2 box, thus increasing the dimensions of the551

image by a factor of 2. This is used in the ‘decoder’ part of the auto-encoder CNN.552

B The barotropic model553

Following (Charney et al., 1950) a, we approximate the flow at 500 hPa as nondi-554

vergent. We define  (�, µ, t) as the streamfunction for that flow, where � is longitude,555

� is latitude, and µ = sin�. The barotropic vorticity equation(1) on the surface of a556

sphere of radius a can be expressed entirely in terms of  as557
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As discussed in Holton and Hakim (2013, p. 468), the preceding can be solved very ef-558

ficiently if, at any time t0,  (�, µ, t0) is approximated as the sum of spherical harmonic559

basis functions, because the computation required to compute  from r2 is trivial. Our560
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CAN WE TRUST NWP MODELS?

• Dynamical core: equations for conservation of mass, energy and momentum … 

• Inviscid motions and wave propagation  

• Numerical approximation can be evaluated for order of accuracy, stability, … 

• Operational Models Rely on Parameterizations 

• Clouds and precipitation 

• Influence of the Earth’s surface (surface temperatures) 

• Heat transfer by electromagnetic radiation 

• Parameterizations are evaluated empirically!
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AI AND NWP
• Parameterizations are empirical and major limitations in the accuracy of NWP 

• Many groups are trying to improve parameterizations using AI 

• State-of-the-art NWP models require enormous computer resources for each 
forecast 

• Completely replacing NWP with Deep Learning Weather Prediction (DLWP) could 
• Reduce the time required for each forecast by orders of magnitude 

• Thereby addressing uncertainty 

• Allowing a large number of simulations of likely future states (ensembles) 

• Giving better probabilistic forecasts 

• Capturing extreme events
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DLWP BUILDING BLOCKS: CUBED SPHERE GRID

• Convolutional neural 
network (CNN) 

• 3x3 spatial stencil 

• Train identical filters for 

• 4 equatorial-centered 
faces 

• 2 polar faces 

• sense of rotation 
reversed between polar 
faces
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DLWP BUILDING BLOCKS: U-NET ARCHITECTURE
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Incorporates information from larger scales

Preserves fine-scale information

256

128

64

1×1
conv

3×3 convolution
2×2 average pooling
2×2 up-sampling
skip connection



DLWP BUILDING BLOCKS: DATA

• ERA5: observations blended with NWP model output 

• Retrieved on 1° lat-lon grid 

• Re-gridded to cubed sphere (Ullrich & Taylor, 2015) 

• Model training: 1979-2012  

• ~100,000 samples 

• Model validation set: 2013-2016  

• Test set: final performance evaluation: 2017-2018  

• twice weekly: 208 cases
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2D FIELDS ON SPHERICAL SHELLS

• 6 or 7 prognostic variables 
• 1000-hPa height 
• 500-hPa height 
• 300-700-hPa thickness 
• 2-m temperature 
• 850-hPa temperature 
• Total column water vapor 
• 250-hPa height 

• 3 prescribed fields 
• TOA incoming solar radiation 
• land-sea mask 
• topographic height
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• Resolution 

• 64x64 points on each face of the 
cube sphere (figure is 20x20) 

• ~1.4° x 1.4° at the equator



HURRICANES 
IRMA & JOSE

• 4-day single model 
forecast 

• 1.4° x 1.4° 
resolution 

• Plotting 

• 1000-hPa height 
(black) 

• 500-hPa height  
(color fill) 

• 7 prognostic 
variables
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DLWP-NWP COMPARISON
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32-member DLWP MM ensemble at forecast lead times up to 6 weeks. The magnitude of the bias is roughly 
comparable to that shown for 2-m temperature in Weigel et al. (2008). Warm biases are present over the 
northern hemisphere land masses, along with a cold bias over Antarctica. There are also warm biases in 
subtropical regions commonly dominated by marine stratocumulus clouds off the Pacific coasts of North 
and South America. These biases gradually amplify as the forecast lead time increases, although the globally 
averaged spatial-mean bias (noted in each panel) decreases at longer lead times. The tendency of increasing 
local biases to better cancel in the global mean at longer lead times is interesting and perhaps surprising 
because the model is only trained to minimize T2 errors over the first 24 h of the forecast—no global ener-
gy-balance constraints are imposed.

Bias correction has a positive impact on the control forecast and on the IC, MM, and the grand ensembles. 
Although the RSME and spread of the MM and grand ensembles are almost identical over the first 14 days, 
at longer lead times, and particularly after bias-correction, the grand ensemble is clearly superior to the MM 
ensemble (not shown). The performance of the grand ensemble will, therefore, be our focus throughout the 
remainder of this paper.

3.5. ECMWF Ensemble Benchmark

In addition to the persistence and climatology benchmarks, which serve as a baselines that must be exceed-
ed by any skillful forecast, we will also compare our results against the state-of-the-art ECMWF 50 member 
S2S ensemble and a higher resolution ECMWF control simulation (Vitart et al., 2017). Errors are computed 
with respect to ERA5 data that is downloaded at 1° resolution, transformed onto our cube-sphere grid, and 
then transformed back to a 1.5 × 1.5 latitude-longitude grid. Our DLWP forecasts are transformed to the 
same 1.5 × 1.5° grid for the computation of all forecast metrics. The archived ECMWF S2S forecasts, avail-
able on a 1.5 × 1.5° grid, are first transformed to the cube sphere and then back to the 1.5 × 1.5° analysis 
grid because this procedure removed discrepancies in model terrain thereby improving the ECMWF error 
metrics for T2 when evaluated against the same validation data as the DLWP ensemble. Bias correction 
was also performed on the ECMWF S2S control and ensemble forecasts on the 1.5 × 1.5° grid, with the 
methodology following that of the operational ECMWF forecasts. This correction is very similar to the bias 
correction applied to our DLWP model, but with a few differences: the last 20 years of reforecasts are used 
instead of a fixed period of 25 years; 10 ensemble members with perturbed IC and physics are run for each 
reforecast; and only the forecasts for dates within one week, instead of 28 days, of the target operational 
forecast issue date are used.

3.6. Summary

The following summarizes the construction of the DLWP grand ensemble.

1.  Eight distinct training cycles of the DLWP CNN were produced with different random seeds as a first 
step in generating a multi-model ensemble with 32 members.

WEYN ET AL.
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DLWP ECMWF

Atmospheric fields 6 2-D variables 9 prognostic 3-D variables; 91 vertical levels
Horizontal resolution 150 km 18 km (36 km after day 15)
Atmospheric physics 3 prescribed inputs Many physical parameterizations
Coupled models None Ocean, wave, and sea ice models
Initial condition perturbations 10 (ERA5 uncertainty) 50 (SVD/4DVAR)
Model perturbations Perturbed CNN weights Stochastic physics
Ensemble members 320 (+control) 50 (+control)

Table 2 
Comparison of Key Attributes of Our DLWP Ensemble and Those of the State-of-the-Art ECMWF Ensemble for 
Extended-Range Forecasting
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ENSEMBLE PERFORMANCE: DETERMINISTIC LEAD TIMES
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3 days
3 days

DLWP grand ensemble: 32 stochastically perturbed models  x  10 initial conditions = 320 members



ENSEMBLE PERFORMANCE: S2S LEAD TIMES
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DLWP FOR S2S

JONATHAN WEYN, MICROSOFT 
ECMWF-ESA WORKSHOP ON MACHINE LEARNING FOR EARTH SYSTEM OBSERVATION AND PREDICTION, 2020 
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By weeks 5-6, the skill of DLWP for weekly 
anomaly forecasts is nearly on par with that of the    

state-of-the-art ECMWF ensemble.

Anomaly correlation skill of the ensemble mean
Anomaly correlation coefficient of the ensemble mean

Persistence is computed as the 1- or 2-week-averaged anomaly just prior to the initialization

Black bar: 95% confidence interval.  Black dots: best and worst forecast.



6-VARIABLE CLOUD & PRECIPITATION PARAMETERIZATION
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Fig. 1. Flowchart of the microphysics processes in the WSM6 scheme. The terms with red (blue) colors are activated 
when the temperature is above (below) 0 oC, whereas the terms with black color are in the entire regime of temperature.

sedimentation of cloud ice, the new microphysics 
scheme reveals a significant improvement in the high 
cloud amount, surface precipitation, and large-scale 
mean temperature through a better representation of 
the ice-cloud/radiation feedback.

Lim and Hong (2005) implemented the WSM5 
scheme into the fifth-generation Pennsylvania State 
University National Center for Atmospheric Re- 
search Mesoscale Model (MM5). They showed that 
for a locally developed heavy rainfall event over 
Korea, the impact of the revised ice microphysics 
scheme is significant, whereas ice sedimentation is 
more important for those cases of heavy rainfall that 
are associated with a mobile surface cyclone system. 
They also found that the sedimentation of cloud ice 
is crucial to the successful simulation of monsoonal 
precipitation and large-scale features within the East 
Asian summer monsoon.

This study further examines the performance of 
the WSMMPs. In addition to simple (WSM3) and 
mixed-phase (WSM5) schemes of HDC, a more 
complex scheme (WSM6) has been developed; this 
scheme includes graupel as another predictive va- 

riable. The performance of the three categories of the 
WSMMPs, that is, the WSM3, WSM5, and WSM6 
schemes, will be examined for an idealized storm 
case and a mesoscale convective system over Korea. 
Section 2 describes the development of the WSM6 
scheme. Section 3 outlines the numerical experi-
ments conducted in this study, and section 4 presents 
their results. Concluding remarks appear in the final 
section.

The WSM6 scheme has been developed by adding 
additional processes related to graupel to the WSM5 
scheme. In this scheme, new terms related to graupel 
are based on the reports of Lin et al. (1983) and 
Rutledge and Hobbs (1984). The prognostic water 
substance variables in this scheme include the mix-
ing ratios of water vapor ( Vq ), cloud water ( Cq ), 
cloud ice ( Iq ), snow ( Sq ), rain ( Rq ), and graupel 
( Gq ). The microphysical properties in the WSM6 

Hong and Lim, 2006



U-NET DIAGNOSIS OF PRECIPITATION

• Same 6 variables as 
prognostically forecast 
in DLWP model 

• But precipitation is 
diagnosed from the 
ERA5 analysis 

• Can be used to 
diagnose precipitation 
in DLWP forecasts
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• DLWP has the potential to revolutionize weather forecasting, echoing of the impact 
produced by the introduction of NWP in the 1950’s 
• Data-driven AI-based weather prediction has been enabled by advances in 

algorithms and hardware. 
• 1-week forecast stepped forward with 12-hr time step (and 6-hr resolution) 

requires just 1/10 of a second on one Nvidia V100 GPU  
• The speed of DLWP allows us to make much larger “ensembles” of near-twin 

forecasts. 
• Better defines the probable distribution of future atmospheric states 
• Better capture extreme events. 

• DLWP has the potential to improve the representation of processes crudely 
parameterized in NWP.

CONCLUSIONS
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